

Marshfield's Municipal Vulnerability Preparedness (MVP) Program Workshop

Executive Office of Energy and Environmental Affairs Massachusetts Vulnerability Preparedness Program

Your MVP Team

Introductions - Who is here today?

Your name

Your affiliation with the community

One thing you enjoy about living/working in Marshfield

Today's Agenda

• 8:30 Registration & Breakfast

9:00 Welcome and Introductions

• 9:15 Large Group Discussion - Overview

• 10:00 BREAK

• 10:15 Small Group Discussion – Vulnerabilities & Strengths

• 11:45 Large Group Discussion

• 12:30 LUNCH

• 1:15 Small Group Discussion – Action Development

• 3:15 BREAK

• 3:30 Large Group Discussion & Next Steps

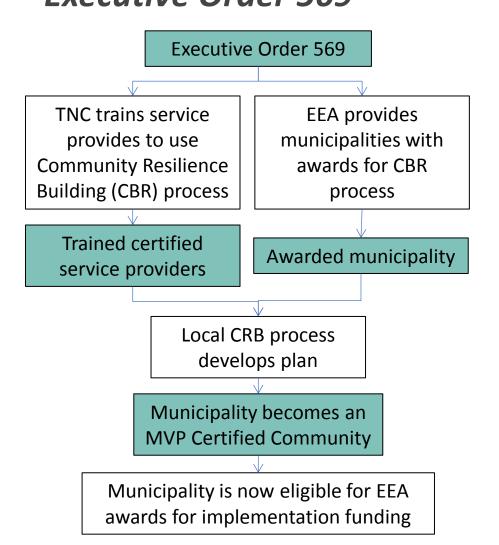
• 4:30 Closing Remarks

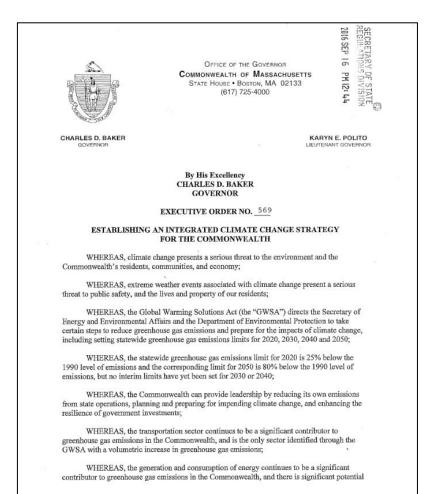
Program Overview: What is Municipal Vulnerability Preparedness?

State and local partnership to build resiliency to climate change

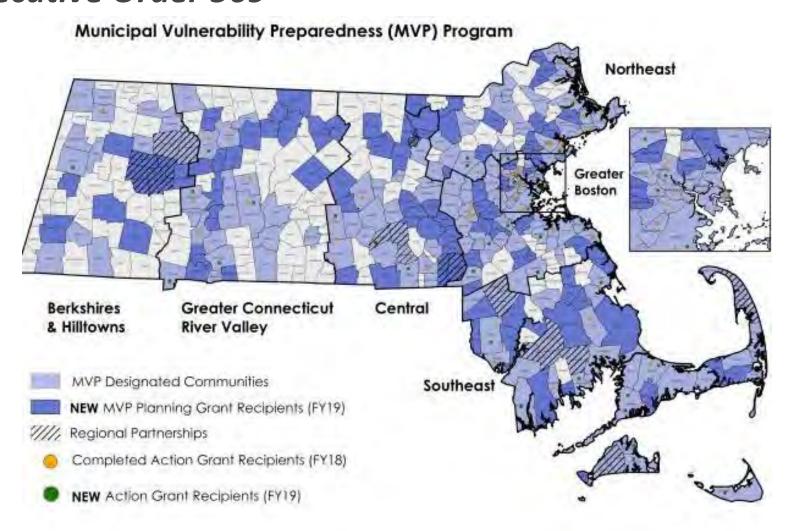
1. Engage Community

2. Identify CC impacts and hazards


3. Complete assessment of vulnerabilities & strengths


4. Develop and prioritize actions

5. Take Action


What is <u>Municipal Vulnerability Preparedness?</u> Executive Order 569

What is <u>Municipal Vulnerability Preparedness?</u> Executive Order 569

What is <u>Municipal Vulnerability Preparedness?</u> Empowering Communities & Informing Statewide Action

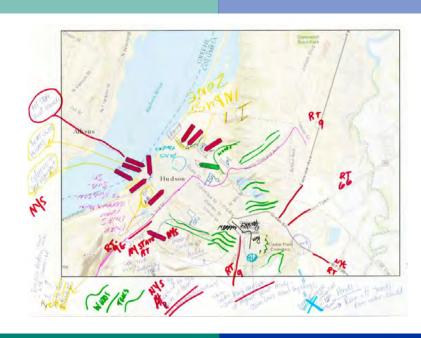
- Community-led process
- Communities as local innovators
- Partnerships and leveraging existing efforts
- Frame coordinated statewide efforts

Goal for Today: Work Through the Community Resilience Building (CRB) Workshop Process

CRB Workshop Process

Identify Hazards

Identify
Community
Strengths &
Vulnerabilities



Develop
Community Actions

Prioritize Actions /
Define Urgency and
Timing

CRB Workshop Process

- CRB Workshop Structure:
 - Identify hazards
 - Identify vulnerabilities and strengths
 - Identify and prioritize community actions
- Small groups: Brainstorming vulnerabilities, strengths, and actions
- Large group: Determining hazards and prioritizing actions

CRB Workshop Process

Town of Marshfield MVP Workshop Risk Matrix					WOODS	OLE C
Priority Level: H = High M = Medium L = Low			Top Priority Hazards			
Time: S = Short L = Long O = Ongoing	A)	B)	c)	D)		-1
		Acti	on Items		Hazards Addressed	Priority /
Infrastructural Features 🚬						
					A/B/C/D	H/M/L S/L/O
					A/B/C/D	H/M/L S/L/O
					A/B/C/D	H/M/L \$/L/O
					A/B/C/D	H/M/L S/L/O
Societal Features 🎥						
					A/B/C/D	H/M/L S/L/O
					A/B/C/D	H/M/L S/L/O
					A/B/C/D	H/M/L S/L/O
					A/B/C/D	H/M/L S/L/O
Environmental Features 🙌					A	
					A/B/C/D	H/M/L S/L/O
					A/B/C/D	H/M/L S/L/O
					A/B/C/D	H/M/L S/L/O
					A/B/C/D	H/M/L S/L/O

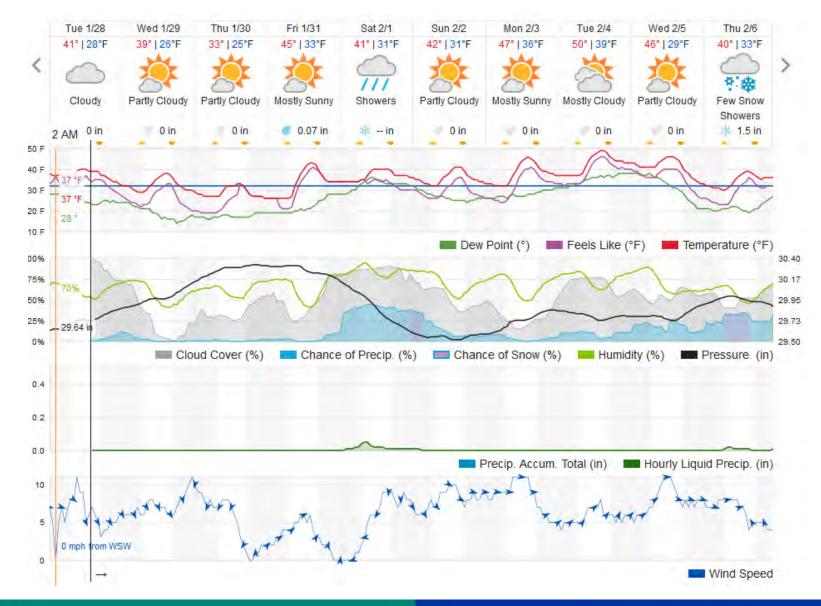
Marshfield – Past, Present, Future

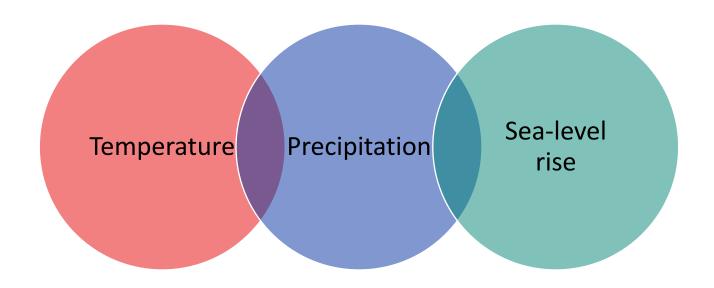
Past hazards – Flooding

Esplande: Jan 4, 2018

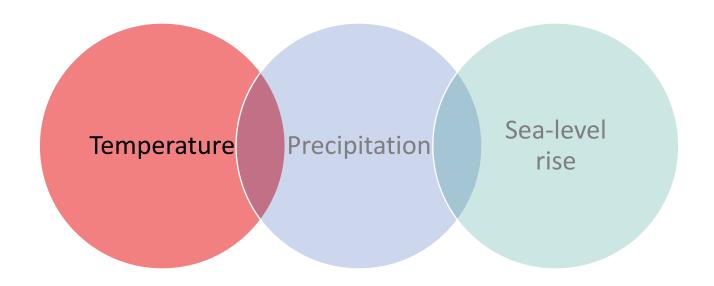
Past hazards – Nor'easters / Snow Storms

Past hazards - Coastal Erosion

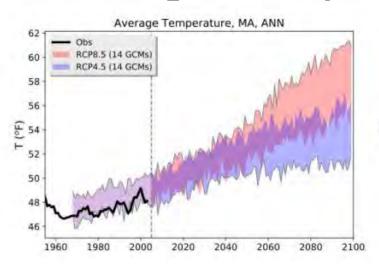


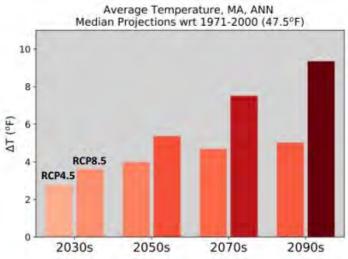


Present conditions

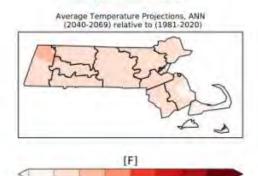


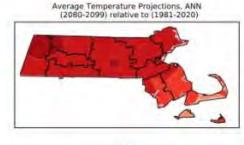
Future conditions Projected changes in ...




Future conditions Projected changes in ...

Projected changes in temperature – annual mean




Climatology 1971-2000

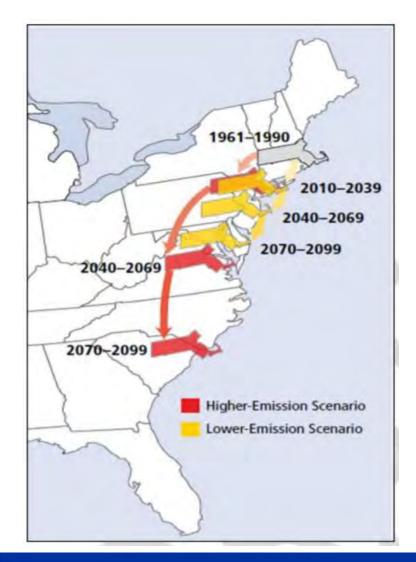
Average Temperature, ANN [1971-2000]

Projections 2050s

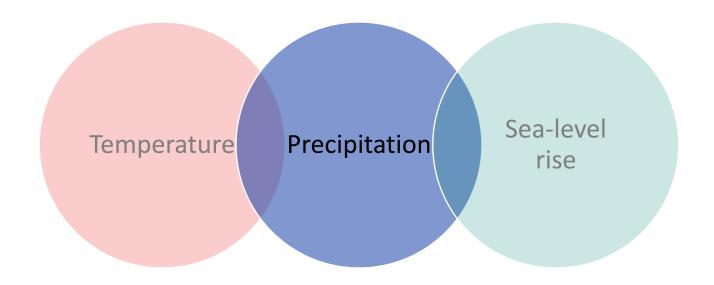
Projections 2090s

Projected changes in temperature

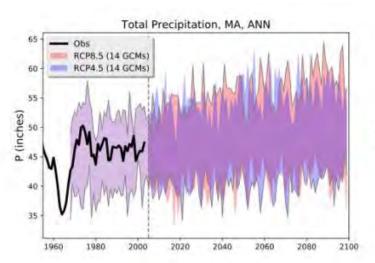
South Coastal Basin		Observed Baseline 1971- 2000 (°F)	Projected Change in 2030s (°F)			Mid-Century Projected Change in 2050s (°F)			Projected Change in 2070s (°F)			Projected Change in 2090s (°F)		
	Annual	49.7	+1.9	to	+3.7	+2.6	to	+5.8	+2.9	to	+8.5	+3.2	to	+10.3
	Winter	30.3	+1.9	to	+4.1	+2.6	to	+6.3	+3.2	to	+8.3	+3.5	to	+9.8
Average Temperature	Spring	46.7	+1.8	to	+3.5	+2.4	to	+5.6	+2.7	to	+7.8	+3.2	to	+9.5
	Summer	69.1	+1.5	to	+3.7	+2.0	to	+6.1	+2.6	to	+9.2	+3.2	to	+11.4
	Fall	52.4	+2.0	to	+4.2	+3.3	to	+6.2	+3.0	to	+8.8	+3.6	to	+10.9
	Annual	59.5	+1.8	to	+3.6	+2.4	to	+5.7	+2.6	to	+8.5	+2.9	to	+10.2
	Winter	62.2	+1.9	to	+4.3	+3.1	to	+6.3	+2.9	to	+8.8	+3.3	to	+11.0
Maximum Temperature	Spring	56.7	+1.7	to	+3.4	+2.1	to	+5.4	+2.6	to	+7.9	+3.0	to	+9.4
remperature	Summer	79.1	+1.4	to	+3.5	+1.9	to	+6.0	+2.5	to	+9.3	+2.9	to	+11.4
	Fall	62.2	+1.9	to	+4.3	+3.1	to	+6.3	+2.9	to	+8.8	+3.3	to	+11.0
	Annual	40.0	+2.0	to	+3.8	+2.8	to	+5.9	+3.2	to	+8.5	+3.5	to	+10.5
	Winter	21.1	+2.2	to	+4.4	+3.0	to	+6.7	+3.7	to	+9.0	+4.0	to	+10.5
Minimum Temperature	Spring	36.8	+1.8	to	+3.6	+2.7	to	+5.8	+2.7	to	+7.6	+3.3	to	+9.4
	Summer	59.1	+1.6	to	+3.8	+2.2	to	+6.3	+2.7	to	+9.1	+3.4	to	+11.3
	Fall	42.6	+2.0	to	+4.5	+3.4	to	+6.1	+3.2	to	+8.8	+3.8	to	+10.9

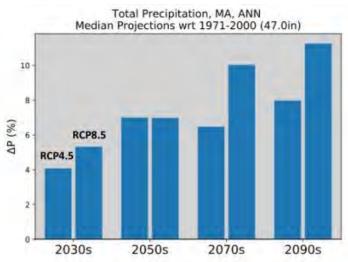

Projected changes in temperature

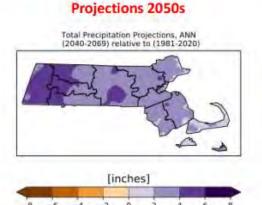
South Coastal Basin		Observed Baseline 1971- 2000 (Days)	Projected Change in 2030s (Days)			Mid-Century Projected Change in 2050s (Days)			Projected Change in 2070s (Days)			Projected Change in 2090s (Days)			
Days with	Annual	5	+4	to	+11	+5	to	+23	+7	to	+41	+9	to	+58	
Maximum	Winter	0	+0	to	+0	+0	to	+0	+0	to	+0	+0	to	+0	
Temperature	Spring	<1 ⁹⁰	+<1 ⁹⁰	to	+1	+<1 ⁹⁰	to	+1	+<1 ⁹⁰	to	+2	+<1 ⁹⁰	to	+3	
Over 90°F	Summer	5	+3	to	+10	+4	to	+20	+6	to	+35	+8	to	+47	
	Fall	<1 ⁹⁰	+<1 ⁹⁰	to	+1	+1	to	+3	+1	to	+6	+1	to	+8	
Days with	Annual	1	+1	to	+4	+1	to	+9	+2	to	+18	+3	to	+31	
Maximum	Winter	0	+0	to	+0	+0	to	+0	+0	to	+0	+0	to	+0	
Temperature	Spring	0	+0	to	+<1 ⁹⁰	+<1 ⁹⁰	to	+<1 ⁹⁰	+<1 ⁹⁰	to	+1	+<1 ⁹⁰	to	+1	
Over 95°F	Summer	1	+1	to	+4	+1	to	+8	+2	to	+16	+3	to	+27	
	Fall	0	+<1 ⁹⁰	to	+<1 ⁹⁰	+<1 ⁹⁰	to	+1	+<1 ⁹⁰	to	+2	+<1 ⁹⁰	to	+3	
Days with	Annual	<1 ⁹⁰	+<1 ⁹⁰	to	+1	+<1 ⁹⁰	to	+3	+<1 ⁹⁰	to	+5	+<1 ⁹⁰	to	+10	
Maximum	Winter	0	+0	to	+0	+0	to	+0	+0	to	+0	+0	to	+0	
Temperature	Spring	0	+0	to	+<1 ⁹⁰	+0	to	+<1 ⁹⁰	+0	to	+<1 ⁹⁰	+0	to	+<1 ⁹⁰	
Over 100°F	Summer	<1 ⁹⁰	+<1 ⁹⁰	to	+1	+<1 ⁹⁰	to	+2	+<1 ⁹⁰	to	+5	+<1 ⁹⁰	to	+9	
	Fall	0	+0	to	+<1 ⁹⁰	+0	to	+<1 ⁹⁰	+0	to	+<1 ⁹⁰	+0	to	+1	

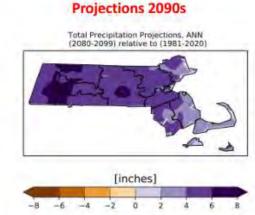

Hazards due to higher temperatures

- Heat islands
- Change in phenology: earlier flowering in some plants; earlier return of migrant birds
- Exacerbated asthma, allergies, and other respiratory conditions
- Higher cooling costs




Future conditions Projected changes in ...


Projected changes in precipitation – annual precipitation



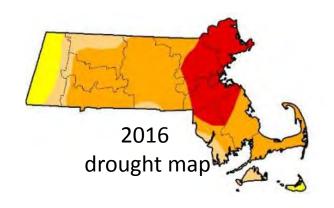
Total Precipitation, ANN [1971-2000]

Climatology 1971-2000

Future conditions Projected changes in precipitation

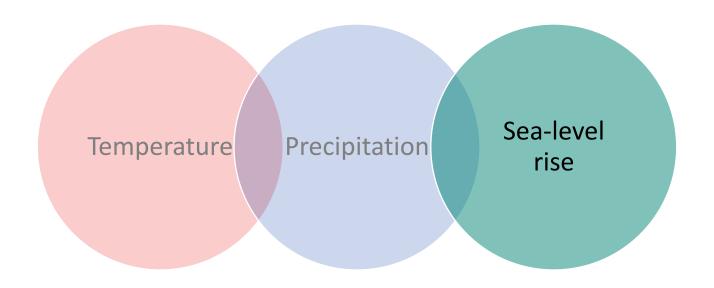
South Coastal Basin		Observed Baseline 1971-2000 (Inches)			hange nches)	Mid-Century Projected Change in 2050s (Inches)			Projected Change in 2070s (Inches)			Projected Change in 2090s (Inches)		
	Annual	47.5	-0.2	to	+3.9	+0.0	to	+5.0	+0.3	to	+6.2	-0.2	to	+6.4
	Winter	12.5	-0.3	to	+1.5	+0.1	to	+1.9	+0.1	to	+2.8	+0.1	to	+3.7
Total Precipitation	Spring	12.1	-0.1	to	+1.8	-0.1	to	+2.2	+0.1	to	+2.4	+0.1	to	+2.8
riccipitation	Summer	10.4	-0.7	to	+1.2	-0.7	to	+1.8	-1.5	to	+2.4	-2.1	to	+2.3
	Fall	12.5	-0.9	to	+1.1	-1.1	to	+1.4	-1.7	to	+1.7	-1.8	to	+1.1

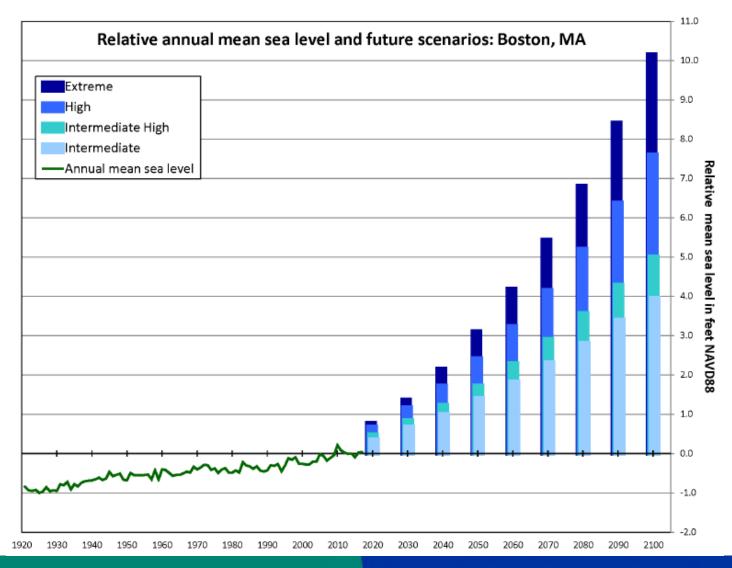
South Coastal Basin Ba		Observed Baseline 1971-2000 (Days)	in 20	Change (Days)	Mid-Century Projected Change in 2050s (Days)			Projected Change in 2070s (Days)			Projected Change in 2090s (Days)			
	Annual	9	+<1 ⁹²	to	+2	+1	to	+3	+1	to	+3	+1	to	+4
Days with	Winter	2	-0	to	+1	+<1 ⁹²	to	+1	+<1 ⁹²	to	+1	+<1 ⁹²	to	+2
Precipitation	Spring	2	-0	to	+1	+<1 ⁹²	to	+1	+<1 ⁹²	to	+1	+<1 ⁹²	to	+1
Over 1"	Summer	2	-0	to	+1	+<1 ⁹²	to	+1	-0	to	+1	-0	to	+1
	Fall	3	-0	to	+1	-0	to	+1	-0	to	+1	-0	to	+1


Future conditions Projected changes in precipitation – dry days

South Coastal Basin		Observed Baseline 1971- 2000 (Days)			Change (Days)	Mid-Century Projected Change in 2050s (Days)			Projected Change in 2070s (Days)			Projected Change in 2090s (Days)		
	Annual	17	-1	to	+2	-0	to	+3	-1	to	+3	-0	to	+4
	Winter	10	-0	to	+2	-1	to	+2	-1	to	+2	-1	to	+2
Consecutive Dry Days	Spring	11	-1	to	+1	-1	to	+1	-1	to	+1	-1	to	+2
Diy Days	Summer	14	-1	to	+2	-1	to	+2	-1	to	+3	-1	to	+4
	Fall	13	+0	to	+3	+0	to	+3	-0	to	+3	-0	to	+3

Hazards due to changes in precipitation


- Flash flooding
- Dam/culvert failure
- More frequent and intense storms – snow/ice damage
- Drought
- Greater prevalence of vector-borne disease (mosquitoes, ticks, etc)



Future conditions Projected changes in ...

Sea-level rise

Future conditions Sea-level rise

	Relative mean sea level (feet NAVD88) for Bosto	on, MA									
Scenario	Cross-walked probabilistic projections	2030	2050	2070	2100						
	Unlikely to exceed (83%) under RCP8.5	0.7	1.4	2.3	4.0						
Intermediate	 Extremely unlikely to exceed (95%) under R Unlikely to exceed (83%) under RCP4.5 About as likely as not to exceed (50%) under possible ice sheet instabilities 		5 when a	accounti	ing for						
	Extremely unlikely to exceed (95%) under RCP8.5	0.8	1.7	2.9	5.0						
Intermediate - High	 Unlikely to exceed (83%) under RCP4.5 when accounting for possible ice sheet instabilities About as likely as not to exceed (50%) under RCP8.5 when accounting for possible ice sheet instabilities 										
	Extremely unlikely to exceed (99.5%) under RCP8.5	1.2	2.4	4.2	7.6						
High	 Unlikely to exceed (83%) under RCP8.5 when accounting for possible ice sheet instabilities Extremely unlikely to exceed (95%) under RCP4.5 when accounting for possible ice sheet instabilities 										
Extreme	Exceptionally unlikely to exceed (99.9%) under RCP8.5	1.4	3.1	5.4	10.2						
(Maximum physically plausible)	Extremely unlikely to exceed (95%) under RCP8.5 when accounting for possible ice sheet instabilities										

Statewide hydrodynamic modeling will use "High" Scenario

Hazards Overview & Survey Results

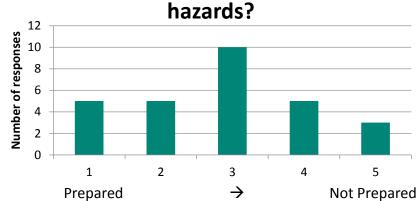
Potential Natural Hazards in Marshfield (included in pre-workshop survey)

- Coastal Flooding
- Inland Flooding
- Coastal Erosion
- Sea-Level Rise
- Hurricane & Tropical Storms
- Flash Rain Events
- Nor'easters/Snow Storms
- Thunderstorm/Lightning

- Drought
- Extreme Temperatures
- High Winds
- Tornadoes
- Wildfires
- Dam/Culvert Failure

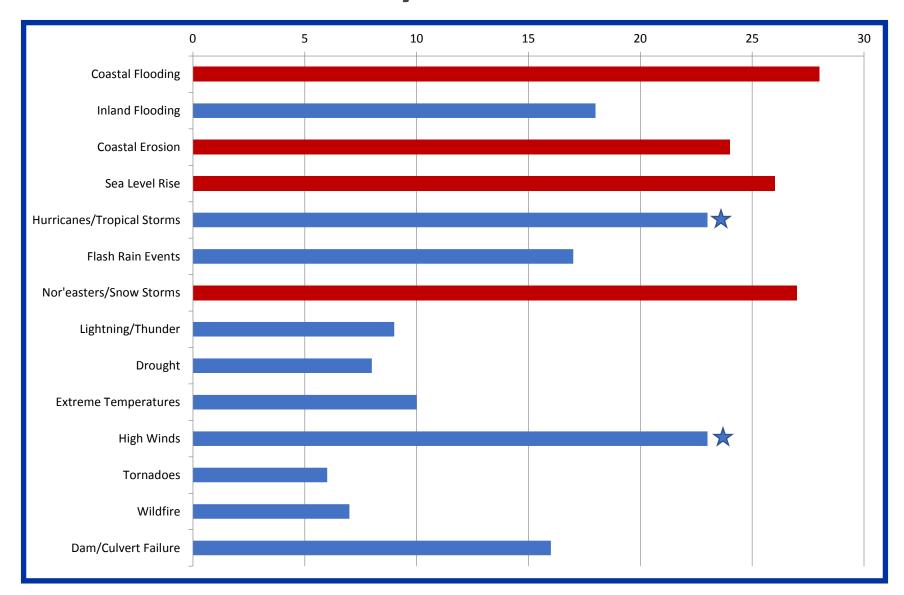
What we heard from you:

What hazards have impacted your organization?


"Stormwater runoff, drought, sea level rise are all impacting the resources that is our mission to protect."

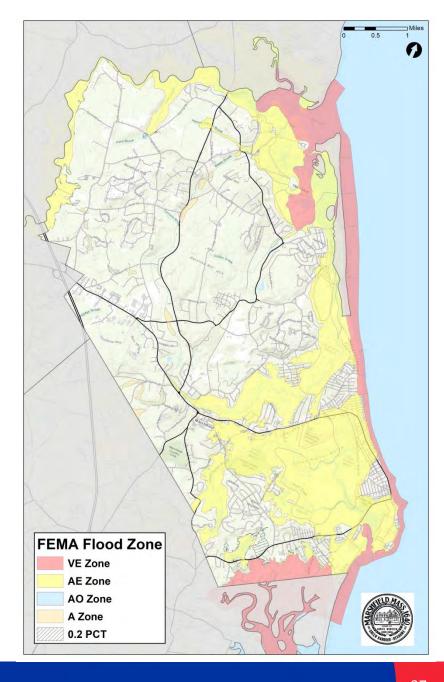
"Problems with coastal storm impacts from sea level rise - flooding, wind/water and flood damage to infrastructure, homes and trees, stronger rainfalls magnifying runoff problems." "Blizzards and nor easters - Loss of electricity, which also leads to loss of heat and frozen pipes."

"Winter storm seawall damage."


"Flooding, erosion and extreme weather (temperature, winds, nor'easters). These hazards affect access to our natural spaces and damage our property."

How prepared is your organization to address these

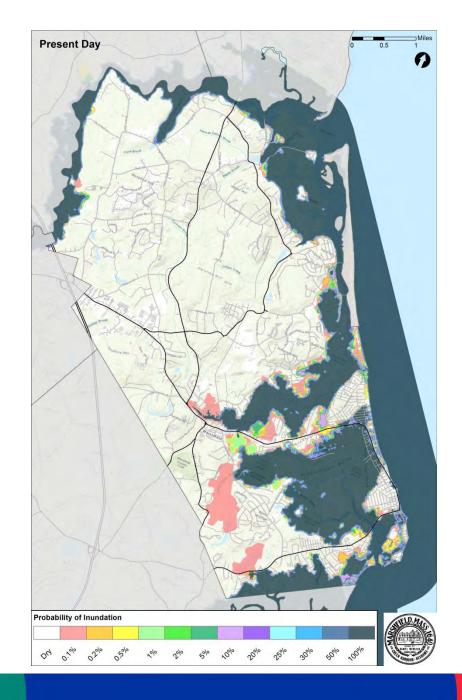
What we heard from you:



Hazards – Coastal Flooding

Hazards – Coastal Flooding

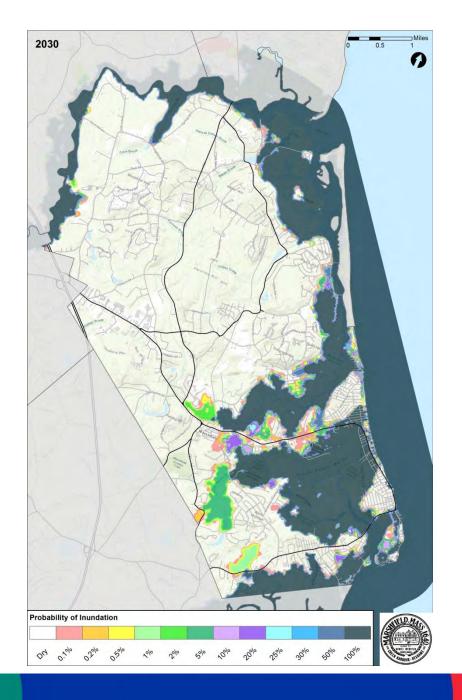
Hazards – Nor'easters / Snow Storms


Date	Description
Jan 26, 2015	Travel ban, near blizzard conditions; 18+ inches of snow
Feb 2, 2015	5-14 inches of snow in coastal areas
Feb 8, 2015	Long duration snow storm; 8+ inches of snow
Feb 14, 2015	Near blizzard conditions; 12+ inches of snow
Mar 5, 2015	Up to 8 inches of snow
Jan 23, 2016	Heavy snow and strong, gusty winds; Up to 11 inches of snow
Feb 5, 2016	Wet heavy snow resulted in major power outages; Up to 10 inches
Feb 8, 2016	Heavy snow, gusty winds and blizzard conditions; 5-8 inches
April 3-4, 2016	4-9 inches of snow
Jan 7, 2017	13-19 inches of snow; near blizzard conditions
Feb 9, 2017	9-17 inches of snow; strong winds
Jan 4, 2018	Nor'easter brought 7-12 inches of snow, high winds, & storm surge
Jan 30, 2018	Up to 8 inches of snow
Mar 13, 2018	8-16 inches of snow; blizzard conditions
Mar 3-4, 2019	Heavy snow; 6-14 inches

Hazards Sea-Level Rise

 Sea-level rise will increase areas flooded by daily high tides...

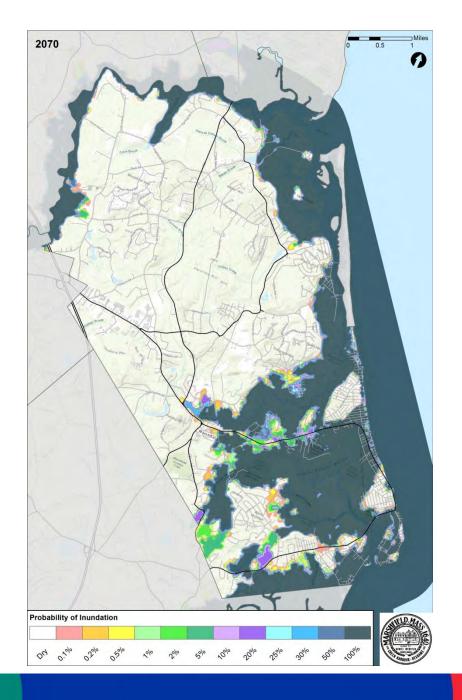
...but the real threat is the combination of sealevel rise and storm surge



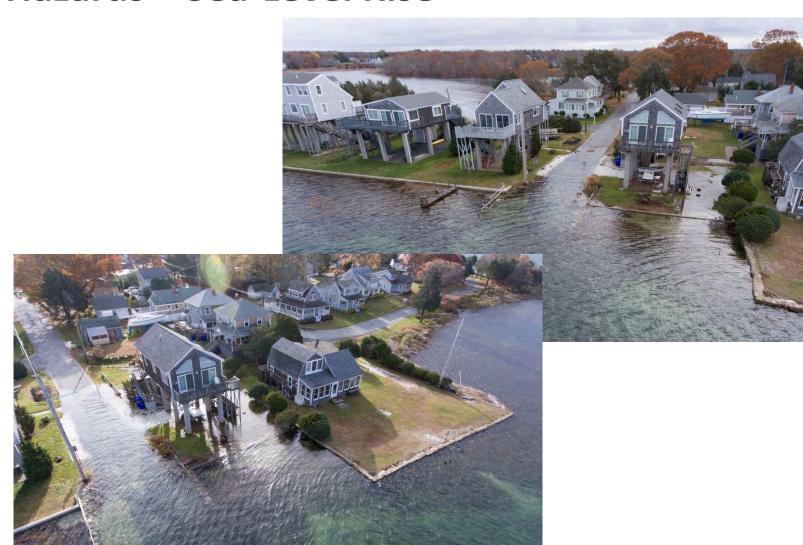
Hazards Sea-Level Rise

 Sea-level rise will increase areas flooded by daily high tides...

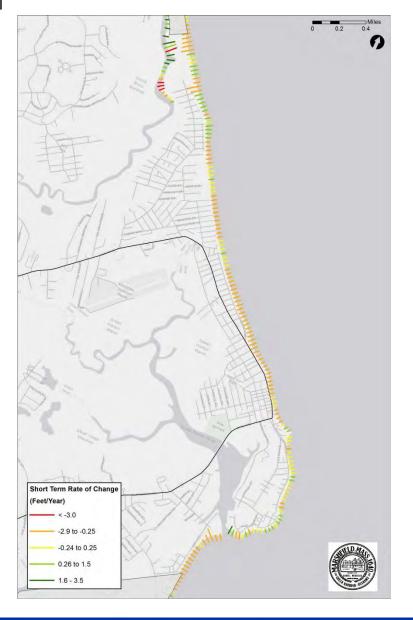
...but the real threat is the combination of sealevel rise and storm surge



Hazards Sea-Level Rise

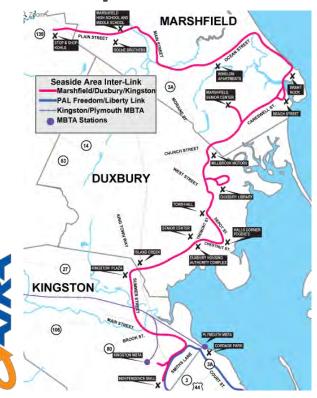

 Sea-level rise will increase areas flooded by daily high tides...

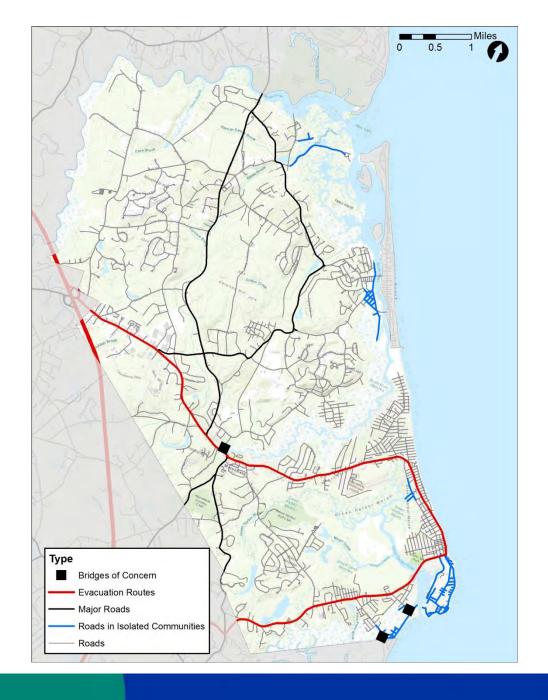
...but the real threat is the combination of sealevel rise and storm surge


Hazards – Sea-Level Rise

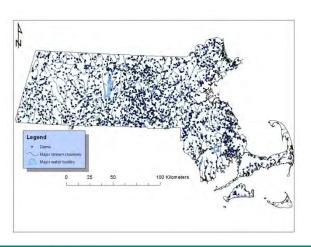
Hazards – Coastal Erosion

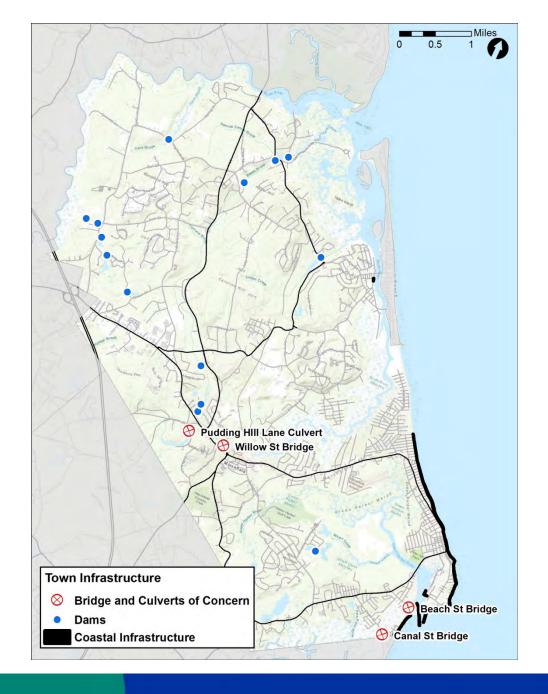
Vulnerabilities & Strengths Overview





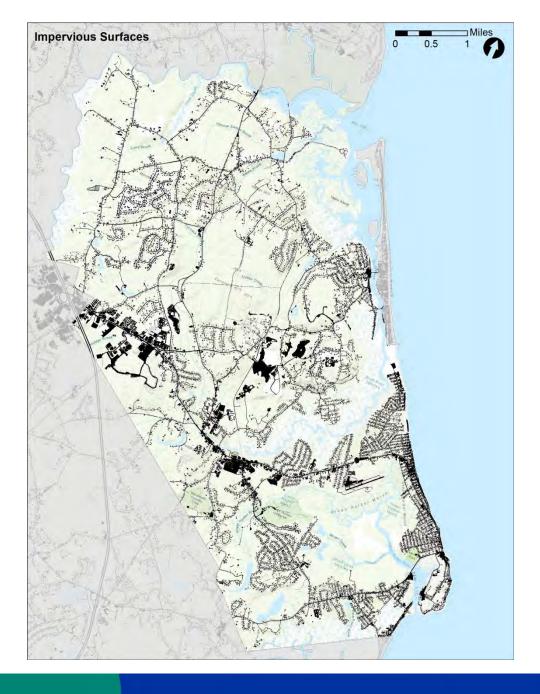
Transportation



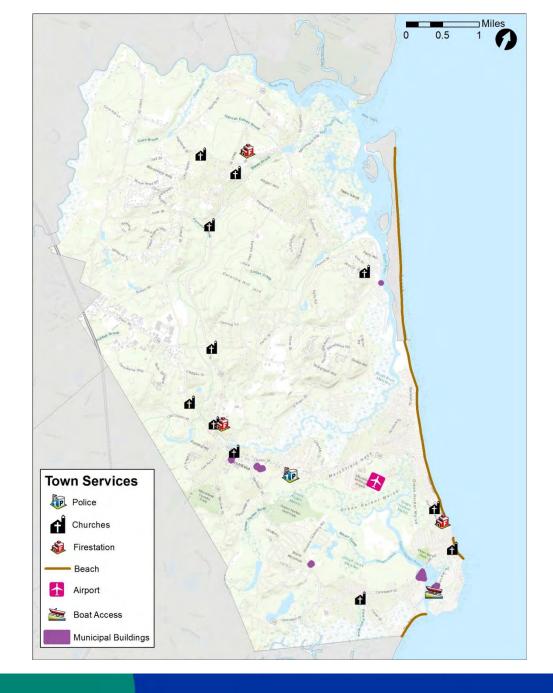


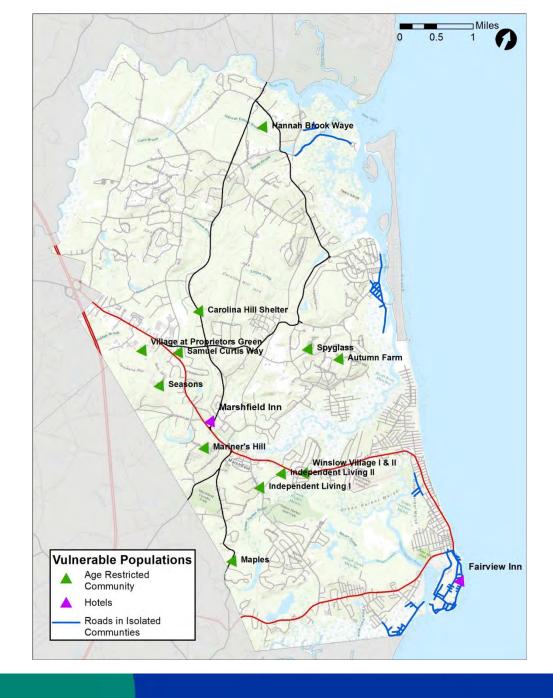
Dams & Coastal Infrastructure

Massachusetts has more than 3000 dams.



Impervious Surfaces



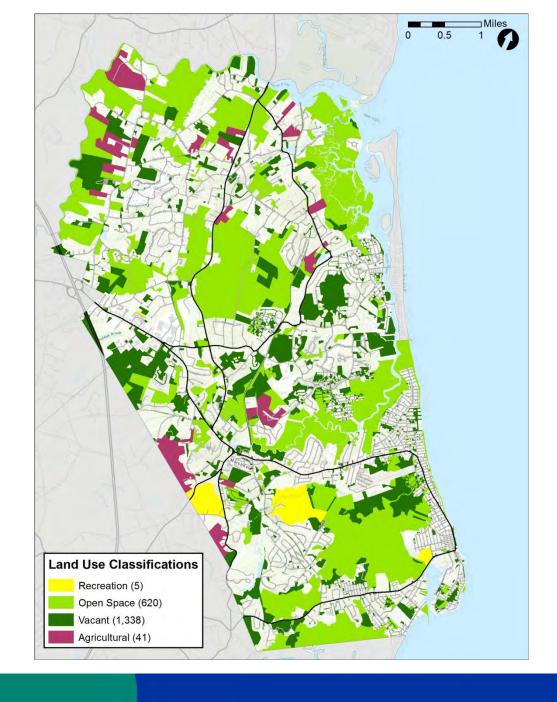


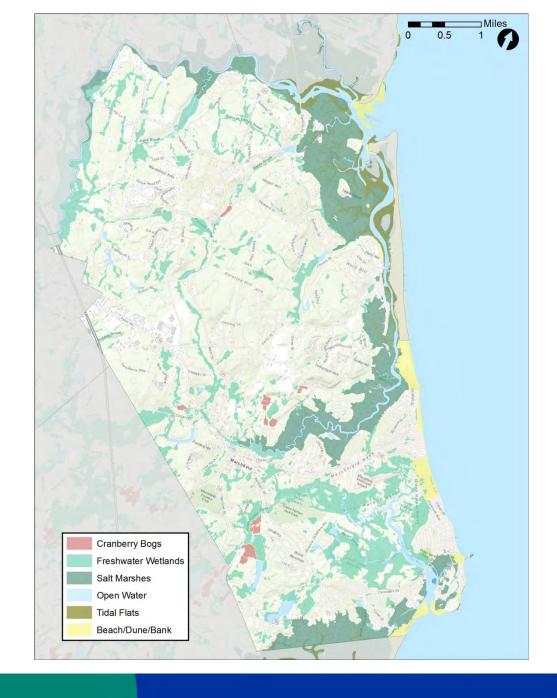
Town Services

Vulnerable Populations

Historical Features

- Marshfield Hills Historic District (Bow, Highland, Main, Old Main, Pleasant, Glen, and Prospect Sts)
- Thomas-Webster Estate (Webster St.)
- Daniel Webster Law Office and Library (Careswell and Webster Sts)
- Issac Winslow House (Careswell St.)


Environmental


Environmental

Environmental

Break

Reconvene at Small Group Locations at 10:15am